

Progressive Education Society's

Modern college of Arts, Science and Commerce,

Ganeshkhind,Pune-16

Autonomous

Two year Degree program in Mathematics

(Faculty of Science and Technology)

M.Sc. – Mathematics

Part - I

Choice Based Credit System Syllabus

To be implemented from Academic Year 2022-2023

Page 1

Aims and Objectives of the curriculum :

1)To maintain updated curriculum.

- 2)To take care of fast development in the knowledge of mathematics.
- 3)To enhance the quality and standards of Mathematics Education.
- 4)To provide a broad common frame work, for exchange, mobility and free dialogue across the Indian Mathematical and associated community.
- 5)To create and aptitude for Mathematics in those students who show a promise for higher studies and creative work in Mathematics.
- 6)To create confidence in others, for equipping themselves with that part of Mathematics which is needed for various branches of Sciences or Humanities in which they have aptitude for higher studies and original work.

Course Outcome

CO	Details
	After completing M.Sc. (Mathematics) Program students will
CO1	Get advanced knowledge of principles, methods and clear perception of innumerous power of mathematical ideas and tools.
CO2	Be able to apply their skills and knowledge, which translate information presented verbally into Mathematical form select and use appropriate mathematical formulae or techniques in order to process the information and draw relevant conclusion in other areas.
CO3	Be able to find out or analyze scientific reasoning for various things and student will get knowledge about both pure as well as applied mathematics branches.
CO4	Develop capacity of critical reasoning, theoretical applied and communication skills and develop abilities for logical thinking and problem solving used for community.
CO5	Get adequate exposure to global and local concerns that explore them many aspects of Mathematical sciences in higher studies.

Course Structure

M.Sc. Part-I

Semester-I

Sr. No.	Course Code	Name of the Course	% of Assessment		Total Marks	Credits
			IA	TEE		
1	22 -MTUT-111	Linear Algebra	30	70	100	4
2	22 -MTUT-112	Real Analysis	30	70	100	4
3	22 -MTUT-113	Group Theory	30	70	100	4
4	22 -MTUT-114	Advance Calculus	30	70	100	4
5	22 -MTUT-115	Ordinary Differential Equations	30	70	100	4

Semester-II

Sr. No.	Course Code	Name of the Course	% of Assessment		Total Marks	Credits
			IA	TEE		
1	22 -MTUT-121	Complex Analysis	30	70	100	4
2	22 -MTUT-122	General Topology	30	70	100	4
3	22 -MTUT-123	Ring Theory	30	70	100	4
4	22 -MTUT-124	Advance Numerical Analysis	30	70	100	4
5	22 -MTUT-125	Partial Differential Equations	30	70	100	4

IA : Internal Assessment , TEE : Term End Examination

*Study tour should arrange in each academic year

Page 3

Course Structure

M.Sc. Part-II

Semester-III

Sr.No.	Course Code	Name of the Course	Credits		
	Compulsory Courses				
1	23 -MTUT-131	Functional Analysis	4		
2	23 -MTUT-132	Field Theory	4		
3	23 -MTUT-133	Programming with Python	2 + 2 = 4		
			Theory + Practical		
	O = Optional Papers (Any Two)				
4	23 -MTUTO-134	Discrete Mathematics	4		
5	23 -MTUTO-135	Mechanics	4		
6	23 -MTUTO-136	Advanced Complex Analysis	4		
7	23 -MTUTO-137	Integral Equations	4		
8	23 -MTUTO-138	Differential Manifolds	4		

Semester-IV

Sr.No.	Course Code	Name of the Course	Credits		
	Compulsory Courses				
1	23 -MTUT-141	Fourier Series and Boundary Value Problems	4		
2	23 -MTUT-142	Differential Geometry	4		
3	23 -MTUT-143	Introduction to Data Science	2 + 2 = 4 Theory + Practical		
	0	= Optional Papers (Any Two)			
4	23 -MTUTO-144	Number Theory	4		
5	23 -MTUTO-145	Algebraic Topology	4		
6	23 -MTUTO-146	Representation Theory of Finite Groups	4		
7	23 -MTUTO-147	Coding Theory	4		
8	23 -MTUTO-148	Probability and Staststics	4		

*Study tour should arrange in each academic year

Detailed Syllabus

M.Sc. Part-I

Semester-I

22-MTUT-111 : Linear Algebra

Course Outcomes

СО	Details
CO1	Student will learn the importance and applications of linear transformation.
CO2	Student will learn matrix and it's properties, system of equations which has wide variety of applications in various science subjects.
CO3	Student will learn concepts of vector space from various dimensions, which is used in other pure mathematical subjects and engineering.
CO4	: Student will get introduced to finite dimensional spectral theorem.

Course Content

Unit I. Vector Spaces.

[06 Hours]

1.1Vector Spaces.

1.2Subspaces and linear dependence.

1.3 The concepts of basis and dimension

1.4Some general theorems about finitely generated vector spaces..

Unit II. Linear Transformation and Matrices.

[06 Hours]

2.1 Linear Transformations

2.2 Addition and multiplication of matrices.

2.3 Linear Transformations and matrices.

Page 6

MSc (Mathematics)

Unit III. Vector Spaces with an Inner product.	[10 Hours]
3.1The concept of symmetry	
3.2 Inner Product.	
Unit IV. The Theory of a single Linear Transformation.	[10 Hours]
 4.1 Basic Concepts 4.2 Invariant Subspaces 4.3 The Triangular form theorem 4.4 The rational and Jorden canonical forms. Unit V. Dual Vector Spaces and Multilinear Algebra. 	[14 Hours]
5.1 Quotient spaces and dual vector spaces5.2 Bilinear forms and duality5.3 Direct sums and tensor products5.3 A proof of the elementary divisor theorem.	
Unit VI. Orthogonal and Unitary Transformations	[14Hours]
 6.1 The structure of orthogonal transformations 6.2 The principal axis theorem 6.3 Unitary transformation and the spectral theorem. Recommended Book :Charles W. Curtis: Linear Algebra An Approach, Springer. Chapter 2: Sect- 3, 4, 5, 7. Chapter 3: Sect- Theorem 11.7, Definition 11.8, Theorem 11.7', Definition 11.10 11.11, Theorem 11.12), 13.Chapter 4: Section 15. Chapter 7: Sect-	Introductory -11 (except), Theorem ections 22, 23,
24, 25. Chapter 8: Sections 26, 27, 28, 29. Chapter 9: Sections 3	0, 31,32
 Reference Books: 1) Vivek Sahai, Vikas Bist, Linear Algebra, Narosa Publication. 2) K. Hoffman, Ray Kunze, Linear Algebra, Prentice Hall of Ind 3) P. B. Bhattacharya, S. R. Nagpaul, S. K. Jain, First Course in Algebra, 2 nd Edition, New Age International Publishers. 4) S. Kumaresan, Linear Algebra A Geometric Approach, PHI Le Private I td 	lia Private Ltd. Linear earning

Page 7

22-MTUT-112 : Real Analysis

Course Outcomes

СО	Details
CO1	The student will gain confidence in proving theorems and solving problems.
CO2	Student will understand the generalized concept of measure and integration.
CO3	Student will be able to understand Lebesgue integration and compare it with Riemann Integration.
CO4	Students will learn the convergence theorems, which have wide variety of applications.

Course Content

Unit-I. The Real Numbers: Sets, Sequences and Functions [3 Hours]

1.1Countable and uncountable sets

1.20pen sets, closed sets and Borel sets of Real Numbers

Unit-II. Lebesgue Measure:

[17 Hours]

2.1Lebesgue Outer Measure

2.2σ- algebra of Lebesgue Measurable Sets

2.3 Outer and Inner Approximation of Lebesgue Measurable Sets

2.4Countable Additivity

2.5 Continuity

2.6 Borel-Cantelli Lemma

2.7 Non-measurable Set, Cantor Set, Cantor-Lebesgue Function.

Unit-III. Lebesgue Measurable Functions:

- 3.1Definition and algebra of Lebesgue Measurable Functions
- 3.2Sequential Point wise Limits and Approximations by Simple Functions
- 3.3 Littlewood's Three Principles
- 3.4 Egoroff's Theorem
- 3.5 Lusin's Theorem.

Unit IV. Lebesgue Integration

- 4.1 The Riemann Integral
- 4.2 The Lebesgue integral of a Bounded Measurable Function over a set

of finite Measure

- 4.3 The Lebesgue integral of a Measurable Non-negative Function
- 4.4 The General Lebesgue Integral
- 4.5 Countable Additivity and Continuity of Integration
- 4.6 Uniform Integrability : The Vitali Convergence Theorem

Unit-V. Differentiation and Integration:

- 6.1 Continuity of Monotone Functions (Statements and definitions only)
 - 5.2Lebesgue's Differentiation Theorem (Statements and definitions only)
 - 5.3Functions of Bounded Variation
 - 5.4 Jordan's Theorem, Absolutely Continuous Functions
 - 5.5 Integration of Derivatives
 - 5.6Differentiation of Indefnite Integral
 - 5.7 Fundamental Theorem of Calculus.

Recommended Book:

Real Analysis-Fourth Edition, Authors: H. L. Royden, P. M. Fitzpatrick.

Sections: Chapter 1- sections 1.3,1.4,

- Chapter 2 sections 2.1 to 2.7,
- Chapter 3 sections 3.1 to 3.3,
- Chapter 4 4.1,4.2, 4.3(Linearity and monotonicity only statement),

4.4(Linearity and monotonicity only statement), 4.5, 4.6

Chapter 6 – sections 6.1 to 6.5.

[12 Hours]

MSc (Mathematics)

[13 Hours]

[15 Hours]

Reference Books:

- 1. Real Analysis: Authors: Elias M. Stein, Rami Shakarchi.
- 2. Basic Real Analysis: Author: Anthony W. Knapp.
- 3. Beginning Functional Analysis: Authors: Karen Saxe (Springer International Edition)

22-MTUT-113: Group Theory

Course Outcomes

СО	Details
CO1	Student will be able to recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, etc;
CO2	This course will enhance abstract thinking of students.
CO3	Student will learn to compare two different algebraic structures and study transfer of properties in-between these structures through homomorphism and isomorphism.
CO4	Student will understand the significance of sylow theorem, group action and their applications.
CO5	With this course students are prepared for higher mathematical courses such as ring theory and field theory ,Galois theory etc.

Course Content

UNIT-I: Groups, Subgroups and Cyclic Groups

[12 Hours]

1.1 Definition and Examples of Groups; Properties of Groups; Order of a finite group; Order of an element in group; Subgroups; Subgroup Tests.

1.2Cyclic Groups; Properties of Cyclic Groups; Classification of Subgroups of Cyclic Groups.

UNIT-II: Permutation Groups- Isomorphism

- 2.1 Permutations Groups; Definition and notation; Cycles; Properties of Permutations; Even and odd permutations; Alternating Group of degree n.
- 2.2 Isomorphism of Group; Properties of Isomorphisms; Cayley's Theorem; Automorphisms.

UNIT-III: Cosets, Lagrange's Theorem, External Direct Product [12 Hours]

- 3.1 Cosets; Lagrange's Theorem and consequences; Stabilizer and orbit; Orbitstabilizer theorem.
- 3.2 External Direct Products; Properties of External Direct Products; Group of units modulo n as an external direct product.

UNIT-IV: Normal Subgroups, Homomorphisms

- [12 Hours] 4.1 Normal Subgroups; Factor Groups; Application of Factor Groups; Internal DirectProducts.
- 4.2 Group Homomorphisms; Definition and examples; Properties of Homomorphisms; First Isomorphism Theorem.

UNIT-V: Sylow Theorems

- 5.1 Fundamental Theorem of Finite Abelian Groups; Isomorphism Classes of AbelianGroups; Proof of the Fundamental Theorem.
- 5.2 Conjugacy Classes; Class Equation; The Sylow Theorems; Applications of Sylow's Theorems.

UNIT-VI: Group Actions

6.1 Group Actions; Definition and examples; Permutation representation associated to a given action; Faithful action; Kernel; Left regular action.

Recommended Books:

- 1) Joseph Gallian, Contemporary Abstract Algebra, 9 th Edition, Cengage Learning India Pvt. Ltd. ISBN-10 9353502527 Chapters 2, 3, 4, 5 (except last article: A check Digit Scheme based on D5). Chapters 6, 7 (except: Rotations of a cube and Soccer Ball and subsequent Article). Chapter 8 (except: Applications). Chapters 9, 10, 11, 24.
- 2) David S. Dummit, Richard M. Foote, Abstract Algebra, 2 nd Edition, JohnWiley and Sons (Indian Edition) In chapter 1 only Article 1.7.

Page 11

MSc (Mathematics)

[8 Hours]

[4 Hours]

[12 Hours]

Reference Books:

- 1) I. S. Luthar, I. B. S. Passi, Algebra (Vol 1), Groups; Narosa Publication House.
- 2) I. N. Herstein, Topics in Algebra, Wiley Eastern Ltd.
- 3) M. Artin, Algebra, Prentice Hall.
- 4) N. S. Gopalkrishnan, University Algebra, Wiley Eastern Ltd.
- 5) J. B. Fraleigh, A First Course in Abstract Algebra, 7 th Edition, Pearson EditionLtd.

22-MTUT 114 : Advanced Calculus

Course Outcomes

СО	Details
CO1	The basic concepts in multivariable calculus will be strengthened.
CO2	Student will learn the advanced concepts in several variable calculus.
CO3	Student will learn to evaluate line integral, multiple integrals and surface integrals.
CO4	Student will learn Green's and Stoke's theorem which have wide applications in other physical sciences.

Course Content

UNIT-I: Differential Calculus of Scalar and Vector Fields [20 Hours]

- 1.1 Functions from \mathbb{R}^n to \mathbb{R}^m . Scalar and vector fields; Limits and continuity.
- 1.2 The derivative of a scalar field with respect to a vector; Directional derivatives and partial derivatives; Partial derivatives of higher order; Inverse function theorem and Implicit Function theorem . (without proof)
- 1.3 Directional derivatives and continuity; The total derivatives; The gradient of ascalar field; A sufficient condition for differentiability.

CBCS: 2022-23

1.4 A chain rule for derivatives of scalar fields; Applications to geometry. Levelsets.Tangent planes; Derivatives of vector fields; Differentiability implies continuity; The chain rule for derivatives of vector fields; Matrix form of the chain rule.

UNIT-II: Line Integrals

[10 Hours]

[15 Hours]

- 2.1 Paths and line integrals; Other notations for line integrals; Basic properties of line integrals.
- 2.2 The concept of work as a line integral; Line integrals with respect to arc length; Further applications of line integrals.
- 2.3 Open connected sets. Independence of the path; The first and second fundamental theorem of calculus for line integrals; Necessary and sufficient conditions for a vector field to be a gradient; Necessary conditions for a vectorfield to be a gradient.

UNIT-III: Multiple Integrals

- 3.1 Partitions of rectangles. Step functions; The double integral of a step function; The definition of the double integral of a function defined and bounded on a rectangle ; Upper and lower double integrals; Evaluation of double integral by repeated one-dimensional integration; Geometric interpretation of the double integral as a volume; Worked examples.
- 3.2 Integrability of continuous functions; Integrability of bounded functions with discontinuities; Double integrals extended over more general regions; Applications to area and volume; Worked examples.
- 3.3 Green's theorem in the plane; Some applications of Green's theorem; A necessary and sufficient condition for a two dimensional vector field to be agradient.
- 3.4 Change of variables in a double integral; Special cases of the transformation formula with proof; General case of the transformation formula with proof; Extensions to higher dimensions; Change of variables in an n-fold integral; Worked examples.

[15 Hours]

UNIT-IV: Surface Integrals

- 4.1 Parametric representation of a surface; The fundamental vector product; The fundamental vector product as a normal to the surface; Area of a parametric surface.
- 4.2 Surface integrals; Change of parametric representation ; Other notations forsurface integrals
- 4.3 The theorem of Stokes; Curl and divergence of a vector field; Properties of curland divergence; the divergence theorem (Gauss' theorem) and applications of divergence theorem.

Recommended Book:

 Tom M. Apostol, Calculus Volume II (Second Edition) Indian Reprint 2016 (JohnWiley & Sons, Inc) ISBN:978-81-265-1520-2. Unit 1: Chapt 8 : 8.1 to 8.22. ;Unit 2: Chapt 10 : 10.1 to 10.11, 10.14 to 10.16.

Unit 3: Chapt 11 : 11.1 to 11.15; 11.19 to 11.22, 11.26 to 11.34.; Unit 4: Chapt 12: 12.1 to 12.15, 12.19 and 12.21.

For "Inverse Function Theorem" and "Implicit Function Theorem", use Tom M. Apostol, Mathematical Analysis 2nd Edition Narosa Publication 20th Reprint 2002. ISBN 978-81-85015-66-8. Unit-I: Chapter 13: Sections 13.3 and 13.4.

Reference Books:

 Gerald B. Folland, Advanced Calculus, Pearson Edn 2012. 2) A Devinatz, Advanced Calculus (Holt, Reinhart & Winston) 1968.

22-MTUT 115 : Ordinary Differential Equations Course Outcomes

CO	Details
CO1	Students will able to solve the problems using multiple approaches and will learn to classify ODEs.
CO2	Students will demonstrate an understanding of the theory of ODEs and will work with a variety of applications of ODE.

CO3	Students will learn to visualize ODEs in graphical, numerical form.
CO4	Student will have a working knowledge of basic application problems described by second order linear differential equations with constant coefficients.
CO5	Students will understand the concepts of existence and uniqueness of solutions.

Course Content

Unit I: Linear equations of the first order	[04 hours]
1.1 Linear equations of the first order	
1.2 The equation y'+ay=0	
1.3 The equation $y'+ay=b(x)$	
1.4 The general linear equations of first order	
Unit II: Linear equations with constant coefficients	[14 hours]
2.1 Second order homogeneous equations	
2.2 Initial value problems for second order equations	
2.3 Linear dependence and independence	
2.4 Formula for the Wronskian	
2.5 Non homogeneous equations of order two	
2.6 Homogeneous equations of order n	
2.7 Non homogeneous equations of order n	
2.8 Algebra of constant coefficients equations	
Unit III: Linear equations with variable coefficients	[14 hours]
3.1 Initial value problems for the homogeneous equation	
3.2 Solutions of the homogeneous equation	
3.3 Wronskian and linear independence	
3.4 Reduction of order of the homogeneous equation	
3.5 Non homogeneous equations with analytic coefficients	
3.6 Homogeneous equations	
3.7 Legendre equation	

CBCS: 2022-23

MSc (Mathematics)

Unit IV: Linear Equations with regular singular points [14 hours]

4.1 Euler equation

- 4.2 Second order equation with regular singular points
- 4.3 Exceptional cases
- 4.4 Bessel's equation
- 4.5 Regular singular point at infinity

Unit V: Existence and uniqueness of solutions to first order equations [14 hours]

5.1 Equations with variables separated

5.2 Exact equations

- 5.3 Method of successive approximations
- 5.4 Lipschitz condition
- 5.5 Approximation to, and uniqueness of, solutions

Recommended Book:

E. A. Coddington, An Introduction to Ordinary Differential Equations (Prentice-Hall).

Chapter- 1.4 -1.7; 2.1-2.12; 3.1-3.8; 4.1- 4.4, 4.6- 4.8; 5.1 -5.8.

Reference Books :

G. F. Simmons and S. G. Krantz, Dfferential Equatins (Tata McGraw-Hill).

SEMESTER-II

22-MTUT 121: Complex Analysis Course Outcomes

СО	Details
CO1	Student will understand the significance of differentiability of
	complex functions leading to the understanding of Cauchy-
	Riemann equations and its applications.
CO2	Student will learn to evaluate the contour integrals and understand
	the role of Cauchy-Goursat theorem and the Cauchy integral
	formula.
002	
003	Student will study now to represent functions as Laurent series,
	classify singularities and poles, also evaluate complex integrals
	and improper integrals.

CO4	With this course students are prepared to learn about advance
	complex analysis.

Course Content

Unit I: Basic Properties of Complex Numbers:	[04 hours]
1.1 Arithmetic of Complex Numbers	
1.2 The Fundamental Theorem of Algebra	
Unit II Complex Differentiability and Conformality:	[10 hours]
2.1 Definition and Basic Properties	
2.2 Polynomials and Rational Functions	
2.3 Analytical Functions: Power Series	
2.4 Cauchy- Riemann Equations	
2.5 Review of Calculus of Two Real Variables	
Unit III: Contour Integration:	[14 hours]
3.1 Definition and Basic Properties	
3.2 Existence of Primitives	
3.3 Cauchy-Goursat Theorem	
3.4 Cauchy's Theorem via Green's Theorem	
3.5 Cauchy's Integral Formulae	
3.6 Analyticity of Complex Differentiable Functions	
3.7 A Global Implication: Liouville	
3.8 Mean Value and Maximum Modulus	
Unit IV: Zeros and Poles:	[14 hours]
4.1 Zeros of Holomorphic Functions	
4.2 Open Mapping Theorem	
4.3 Singularities	
4.4 Laurent Series	
4.5 Residues	
Unit V: Application to Evaluation of Definite Real Integrals:	[12 hours]
5.1 Irigonometric Integrals	
5.2 Improper integrais	
5.5 Jordan & moquality	

Unit VI: Local And Global Properties:

[06 hours]

6.1 Schwarz's Lemma

6.2 Local mapping **Recommended Book:**

 Anant R. Shastri, Basic Complex Analysis of One Variable, MacmillanPublishers India, 2010.
 Ch. 1: 1.1, 1.8.1, Ch. 2: 2.1,2.2, 2.3(only 2.3.1); Ch. 3: 3.1, 3.2, Ch. 4: 4.1 to 4.5, 4.7,4.8, Ch. 5: 5.1 to 5.5, Ch. 6: 6.1 to 6.3; Ch. 7: 7.1, 7.2

Reference Books:

- 1. J. W. Brown and R.V. Churchill, Complex Variables and Applications, IndianEdition. (Eighth Edition)
- 2. John. B. Conway, Functions of One Complex Variable, Springer InternationalStudent Edition. (Second Edition)
- 3. S. Ponnusamy, Foundation of Complex Analysis, Narosa Publications. (SecondEdition)
- 4. L.V. Alfors, Complex Analysis, McGraw Hill, 1979.

22-MTUT-122 : General Topology

Course Outcomes

СО	Details
CO1	Students will study a number of ways of constructing a topology on a set so as to make into a topological space.
CO2	Students will learn the elementary concepts associated with topological spaces.
CO3	. Students will learn the notion of connectedness and compactness which are fundamental in higher analysis.

CO4	Students will be able to write cohesive and comprehensive
	solutions to exercises and be able to defend their arguments.
CO5	Student will understand the natural generalization of the previously learned ideas such as open sets, continuous functions, limit points etc.

Course Content

Unit 1. Prerequisites	[10 Hours]
1.1 : Cartesian Products	
1.2 : Finite Sets	
1.3 : Countable and Uncountable Sets	
1.4 : Infinite Sets and Axiom of Choice	
1.5 : Well Ordered Sets	
Unit 2. Topological Spaces and Continuous Functions	[20 Hours]
2.1 : Topological Spaces	
2.2 : Basis for a Topology	
2.3 : Order Topology	
2.4 : Product Topology on $X \times Y$	
2.5 : Subspace Topology	
2.6 : Closed Sets and Limit Points	
2.7 : Continuous Functions	
2.8 : The Product Topology, Metric Topology	
2.9 : Quotient Topology	
Unit 3. Connected and Compact Spaces	[15 Hours]
3.1 : Connected spaces	
3.2 : Connected Subspaces of Real Line	
3.3 : Components and Local Connectedness	
3.4 : Compact spaces	
3.5 : Compact Subspaces of the Real Line	
3.6 : Limit point compactness	
3.7 : Local Compactness	

MSc (Mathematics)

CBCS: 2022-23

Unit 4. Countablity and Separation Axioms

[15 hours]

- 4.1 : The Countability Axioms
- 4.2 : The Separation axioms and Normal Spaces
- 4.3 : Urysohn Lemma (State Only)
- 4.4 : The Urysohn Metrization Theorem (State Only)
- 4.5 : Tietze Extension Theorem
- 4.6 : Tychonoff's Theorem.

Text Book:

J. R. Munkres, Topology: A First Course, (Prentice Hall, Second Edition), 2000.Chapter 1 : Sec. 5 to 7, Sec. 9 to 10. ;Chapter 2: Sec.12 to 22. Chapter 3 : Sec. 23 to 29. ; Chapter 4 : Sec. 30 to 35 ; Chapter 5 : Sec. 37.

Reference Books:

1. K J"anich. Topology. Springer, 1984.

- 2. M A Armstrong. Basic Topology. Springer, 1983.
- 3. O Viro, O Ivanov, V Kharlamov, and N Netsvetaev. Elementary
- Topology: Problem Textbook, AMS Publication, 2008.
- 4. K. D. Joshi, Introduction to General Topology, John Wiley & Sons .

22-MTUT-123 : Ring Theory

Course Outcomes

СО	Details
CO1	Student will study the algebraic structure Ring and its properties in detail through various examples.
CO2	Student will study the notion of ideals, factorization domain and Module through various examples.
CO3	Student will learn the significance and interconnection of algebraic structures ranging from groups, rings, domains, Ideals to modules.

CBCS: 2022-23

Course Content

Unit I · Rings

Unit I : Rings	[16 hours]
1.1 Basic Terminologies	
1.2 Rings of Continuous functions	
1.3 Matrix Rings, Polynomial Rings, Power Seri	es Rings, Laurent
Rings, BooleanRings, Some Special Rings,	
1.4 Direct Products	
1.5 Several Variables	
1.6 Opposite Rings	
1.7 Characteristic of a Ring.	
Unit II : Ideals	[12 hours]
2.1 Definitions	
2.2 Maximal Ideals	
2.3 Generators	
2.4 Basic Properties of Ideals	
2.5 Algebra of Ideals	
2.6 Quotient Rings	
2.7 Ideals in Quotient Rings	
2.8 Local Rings.	
Unit III : Homomorphisms of Rings	[10 hours]
3.1 Definitions and Basic Properties	
3.2 Fundamental theorems	
3.3 Endomorphism Rings	
3.4 Field of Fractions, Prime fields	
Unit IV : Factorisation Domains	[12 hours]
4.1 Division in Domains	
4.2 Euclidean Domains	

MSc (Mathematics)

CBCS: 2022-23

- 4.3 Principal Ideal Domains
- 4.4 Factorisation Domains
- 4.5 Unique Factorisation Domains
- 4.6 Eisenstein's Crieterion.

Unit V : Modules

- 5.1 Definitions and Examples
- 5.2 Direct Sums
- 5.3 Free Modules
- 5.4 Quotient Modules
- 5.5 Homomorphism
- 5.6 Simple Modules
- 5.7 Modules over PID.

Recommended Book:

C. Musili, Rings and Modules, 2nd Revised Edition, Narosa Publishing House. (Chapters 1, 2, 3, 4, 5)

Reference Books :

- 1. Dummit and Foote, Abstract Algebra, second edition (Wiley India).
- 2. Luther and Passi, Algebra II, Narosa Publishing House.
- 3. Jain and Bhattacharya, Basic Abstract Algebra, 2nd Edition, Cambridge UniversityPress.
- 4. Joseph Gallian, Contemporary Algebra, 7th Edition, Narosa Publishing House.

22-MTUT-124 : Advanced Numerical Analysis

Course Outcomes

СО	Details
CO1	This course enhances theoretical view of students towards numerical methods.

[10 hours]

This course enhances theoretical view of students towards
numerical methods.
This course gives different types of methods to calculate LU
factorization, floating point numbers.
This course enhances the quality and standards of Mathematical
Education.
This course takes care of fast development in the knowledge of
Mathematics.

Course Content

UNIT-I: Root Finding Methods	[10 H0urs]
1.1 Convergence; Floating Point Number Systems; Floating Arithmetic.	g Point
1.2 Fixed Point Interaction Schemes; Newton's Method; Secant Method; Accelerating Convergence.	
UNIT-II: System of Equations	[14 Hours]
 2.1 Gaussian Elimination; Pivoting Strategies. 2.2 Error Estimates and Condition Number; LU decomposition; Direct Factorization. 2.3 Iterative Techniques for Linear Systems: Basic Concepts and Methods 2.4 Nonlinear Systems of Equations. 	
 3.1 The Power Method. 3.2 The Inverse Power Method. 3.3 Reduction to Symmetric Tridiagonal Form. 3.4 Eigenvalues of Symmetric Tridiagonal Matrices. UNIT-IV: Differentiation and Integration 4.1 Numerical Differentiation, Part II. Page 23 	[14 HOURS]

CBCS: 2022-23

4.2 Numerical Integration – The Basics and Newton-Cotes Quadrature; CompositeNewton-Cotes Quadrature.

UNIT-V: Initial Value Problems of Ordinary Differential Equations [12 HOURS]

- 5.1 Euler's Method; Higher-Order One-Step Methods: Taylor Methods.
- 5.2 Runge-Kutta Methods.
- 5.3 Multistep Methods.
- 5.4 Convergence and Stability Analysis.

RECOMMEDNDED BOOK:

1) **Brian Bradie**, A Friendly Introduction to Numerical Analysis, Pearson Prentice Hall 2007, ISBN 978-81-317-0942-9. **Sections:** 1.2 – 1.4, 2.3 – 2.6, 3.1, 3.2, 3.4 -3.6, 3.8, 3.10, 4.1, 4.2, 4.4,

4.5, 6.2,

6.4, 6.5, 7.2-7.6

2) John H. Mathews, Kurtis D. Fink, Numerical Methods Using Matlab, 4th Edition, Pearson Education (Singapore) Pte. Ltd., Indian Branch, Delhi 2005. (SciLab commands similar to MatLab commands can be used for problems)

REFERENCE BOOKS:

- 1) **K.E. Atkinson**, An Introduction to Numerical Analysis, Second Edition, JohnWiley & Sons.
- 2) J. L. Buchaman, P. R. Turner, Numerical Methods and Analysis, McGraw Hill, 1992 cop.
- 3) **M.K. Jain, S.R.K. Iyengar, R.K. Jain**, Numerical Methods for Scientific &

22-MTUT-125 : Partial Differential Equations

Course Outcomes

СО	Details
CO1	Classify partial differential equations and transform into canonical form.

CO2	Solve linear partial differential equations of both first and second
	order.
CO3	Identify real phenomena as models of partial derivative equations.
004	
CO4	Solve Elliptic, parabolic and Hyperbolic differential equations.
CO5	Apply specific methodologies, techniques to conduct research and
COS	Apply specific methodologies, techniques to conduct research and
	produce innovative results in the area of specialization.

Course Content

1. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS OF FIRSTORDER

[12 Hours]

[16 Hours]

- 1.1 Genesis of first order P.D.E.
- 1.2 Compatible systems
- 1.3 Charpit's method
- 1.4 Jacobi's method
- 1.5 Non Linear first order P.D.E

2. FUNDAMENTAL CONCEPTS

- 2.1 First order partial differential equations
- 2.2 Classification of Second Order PDE
- 2.3 Canonical Forms, Canonical Form for Hyperbolic Equation , Canonical Form for Parabolic Equation , Canonical Form for Elliptic Equation
- 2.4 Linear Partial Differential Equations with Constant Coefficients, General Method for Finding CF of Reducible Non-homogeneous Linear PDE ,General Method to Find CF of Irreducible Nonhomogeneous Linear PDE

CBCS: 2022-23

MSc (Mathematics)

1. ELLIPTIC AND PARABOLIC DIFFERENTIAL EQUATIONS [20 Hours]

1.1 Occurrence of the Laplace and Poisson Equations , Derivation of LaplaceEquation , Derivation of Poisson Equation

- 1.2 Boundary Value Problems (BVPs)
- 1.3 Green's first and second identities
- 1.4 Dirichlet Problem for a Rectangle
- 1.5 Occurrence of the Diffusion Equation
- 1.6 Boundary Conditions
- 1.7 Elementary Solutions of the Diffusion Equation
- 1.8 Dirac Delta Function
- 1.9 Separation of Variables Method (with examples)

2. HYPERBOLIC DIFFERENTIAL EQUATIONS

[12 Hours]

- 2.1 Occurrence of the Wave Equation
- 2.2 Derivation of One-dimensional Wave Equation
- 2.3 Solution of One-dimensional Wave Equation by Canonical Reduction
- 2.4 Vibrating string- Variable separable solution(examples)

Recommended Books

- 1. An Elementary Course in Partial Differential Equations, T Amarnath ,NarosaPublication (Chapter 1)
- 2. Intoduction to Partial Differential Equations, K.Sankara Rao (Third Edition) PHILearning Private Limited

Reference Books

- 1. Elements of Partial Differential Equations, Ian Sneddon, Dover Publication
- 2. An Introduction to Partial Differential Equations, Yehud Pinchor & JacoRubinstein, Cambridge University Press

Page 26